Акт

Клинические и инструментальные испытания HiPo, фотометра для 96-луночных планшетов (Biosan, Латвия) и программного обеспечения QuantAssay (Biosan, Латвия) для постановки, регистрации и анализа иммуноферментных реакций были проведены на основе коммерческих наборов реагентов для количественного определения интерлейкинов 8 и 10 для диагностирования хронической болезни почек (Вектор-Бест, Россия).

Клинические испытания проводились в лаборатории клинической иммунологии и иммуногенетики университета Страдиня.

В испытаниях были использованы коммерческие наборы реагентов для иммуноферментного определения концентрации интерлейкина-8 (Интерлейкин-8 – ИФА – БЕСТ) и интерлейкина-10 (Интерлейкин-10 – ИФА – БЕСТ) в биологических жидкостях человека и культуральных средах. Ферментативной меткой для всех наборов служила пероксидаза хрена, субстратом — тетраметилбензидин. Регистрацию результатов проводили параллельно на двух приборах при длине волны 450 нм: аппарате ELx800 (Biotek, США) и на испытуемом приборе HiPo (Biosan, Латвия). Анализ результатов также проводили параллельно используя программное обеспечение GEM5 (Biotek, США) и QuantAssay (Biosan, Латвия).

Результаты ИЛ-8

Расположение образцов в 96-луночном планшете:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Стд. 1	Стп 1	Обр	Обр.								
^	ОД. Т	Стд. 1	. 2	2	10	10	18	18	26	26	34	34
В	Стд. 2	Стд. 2	Обр	Обр.								
D	ОТД. 2	ОТД. 2	. 3	3	11	11	19	19	27	27	35	35
С	Стд. 3	Стд. 3	Обр	Обр.								
C	ОД.	од.	. 4	4	12	12	20	20	28	28	36	36
D	Стд. 4	Стд. 4	Обр	Обр.								
D	од.	од.	. 5	5	13	13	21	21	29	29	37	37
Е	Стд. 5	Стд. 5	Обр	Обр.								
_	ОД.	од.	. 6	6	14	14	22	22	30	30	38	38
F	Стд. 6	Стд. 6	Обр	Обр.								
•	ОД.	ОД.	. 7	7	15	15	23	23	31	31	39	39
G	ПК	ПК	Обр	Обр.								
G	LIK	HIN	. 8	8	16	16	24	24	32	32	40	40
Н	Обр. 1	Обр. 1	Обр	Обр.								
П	Ουρ. 1	(1:2)	. 9	9	17	17	25	25	33	33	41	41

Стд. — Стандартный контрольный образец; Обр. — Тестовый образец; (1:2) — степень разбавления; ПК — Положительный контрольный образец

Регистрация оптической плотности для определения концентрации ИЛ-8

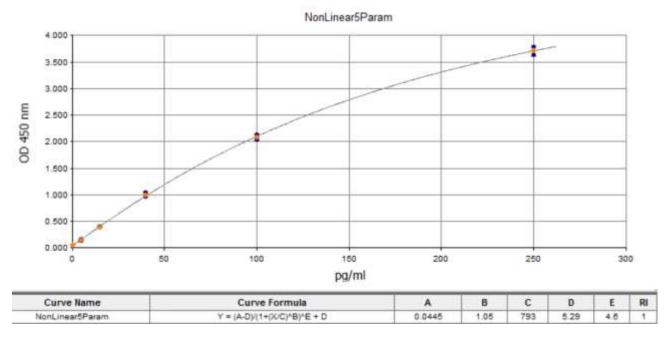
Elx800, оптическая плотность образцов, λ =450 nm

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.052	0.053	0.110	0.119	0.082	0.080	0.167	0.180	0.755	0.730	0.154	0.146
В	0.142	0.160	0.553	0.530	0.121	0.117	0.167	0.180	0.132	0.123	0.721	0.703
С	0.387	0.408	0.313	0.284	0.104	0.097	0.168	0.190	0.614	0.582	0.872	0.784
D	1.046	0.966	0.164	0.157	0.247	0.217	0.152	0.178	1.188	0.910	0.719	0.637
E	2.128	2.046	0.341	0.313	0.089	0.086	0.651	0.779	0.460	0.406	0.135	0.123
F	3.786	3.644	0.112	0.099	0.098	0.093	0.640	0.584	0.249	0.232	0.258	0.229
G	1.719	1.759	0.091	0.092	0.109	0.098	0.367	0.223	0.173	0.154	0.371	0.347
Н	1.012	0.586	0.087	0.079	0.112	0.112	0.403	0.420	0.088	0.083	0.587	0.494

НіРо, оптическая плотность образцов, λ=450 nm

	1	2	3	4	5	6	7	8	9	10	11	12
A	0.047	0.047	0.108	0.111	0.071	0.070	0.158	0.174	0.746	0.721	0.147	0.138
В	0.143	0.164	0.557	0.533	0.124	0.118	0.169	0.177	0.134	0.127	0.723	0.697
С	0.392	0.407	0.317	0.283	0.106	0.097	0.169	0.190	0.613	0.572	0.864	0.775
D	1.044	0.973	0.164	0.153	0.242	0.209	0.148	0.175	1.179	0.904	0.715	0.644
Е	2.127	2.062	0.349	0.316	0.089	0.084	0.651	0.774	0.457	0.406	0.139	0.125
F	3.743	3.801	0.109	0.102	0.105	0.097	0.646	0.581	0.253	0.235	0.263	0.237
G	1.708	1.766	0.088	0.089	0.106	0.094	0.364	0.221	0.166	0.145	0.369	0.344
Н	0.995	0.584	0.077	0.074	0.104	0.102	0.391	0.412	0.079	0.077	0.582	0.495

Относительное отклонение результатов измерений полученных на фотометре HiPo от результатов измерений полученных на Elx 800, выраженное в процентах

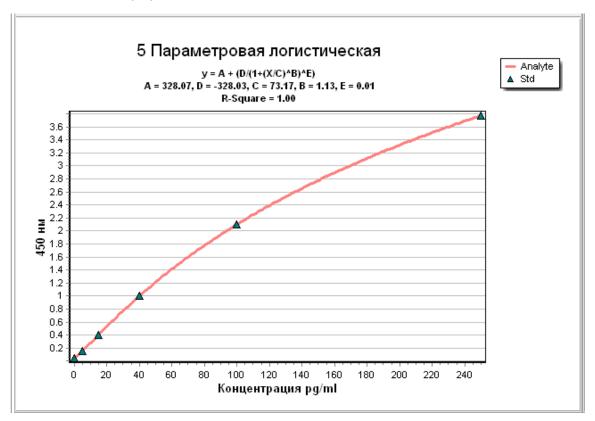

	1	2	3	4	5	6	7	8	9	10	11	12
A	10%	12%	2%	7%	16%	14%	5%	3%	1%	1%	5%	6%
В	0%	3%	1%	1%	2%	1%	1%	1%	1%	3%	0%	1%
С	1%	0%	1%	0%	1%	0%	0%	0%	0%	2%	1%	1%
D	0%	1%	0%	3%	2%	4%	2%	2%	1%	1%	1%	1%
Е	0%	1%	2%	1%	0%	3%	0%	1%	1%	0%	3%	1%
F	1%	4%	2%	3%	7%	5%	1%	1%	1%	1%	2%	4%
G	1%	0%	3%	3%	3%	4%	1%	1%	4%	6%	1%	1%
Н	2%	0%	13%	7%	8%	10%	3%	2%	11%	8%	1%	0%

Оценка и интерпретация результатов

Оценка и интерпретация результатов проводились путем построения калибровочных кривых в программных обеспечениях: GEM5 (Biotek, CША) для результатов полученных на ELX800 и QuantAssay (Biosan, Латвия) для результатов полученных на HiPo.

Калибровочная кривая на GEM5

Количественный учёт результатов по 6 точкам (стандартам) рассчитывался по 5-параметровой логистической логарифмической модели (5PL)



Результаты подсчета концентрации стандартов

Стандарт, пг/мл	Лунка	Gem 5, пг/мл	Отклонение
0	A1	0.36	1
5	B1	4.16	17%
15	C1	14.20	5%
40	D1	42.93	7%
100	E1	101.70	2%
250	F1	260.93	4%
0	A2	0.40	_
5	B2	4.90	2%
15	C2	15.06	0%
40	D2	39.23	2%
100	E2	96.52	3%
250	F2	240.54	4%

Калибровочная кривая на QuantAssay

Количественный учёт результатов по 6 точкам (стандартам) рассчитывался по 5 -параметровой логистической логарифмической модели (5PL)

Результаты подсчета концентрации стандартов

Стандарт, пг/мл	Лунка	QuantAssay, пг/мл	Отклонение
0	A1	< 0.00	_
5	B1	4.45	11%
15	C1	14.44	4%
40	D1	42.10	5%
100	E1	101.76	2%
250	F1	246.62	1%
0	A2	0.13	_
5	B2	5.34	7%
15	C2	15.03	0%
40	D2	38.84	3%
100	E2	97.53	2%
250	F2	253.57	1%

Концентрация образцов рассчитанная в программе GEM5, пг/мл

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.36	0.40	2.84	3.21	1.66	1.58	5.19	5.72	29.79	28.70	4.65	4.32
В	4.16	4.90	21.11	20.15	3.29	3.13	5.19	5.72	3.75	3.38	28.31	27.53
С	14.20	15.06	11.16	9.97	2.59	2.29	5.23	6.13	23.70	22.34	34.97	31.06
D	42.93	39.23	5.06	4.78	8.46	7.23	4.57	5.64	49.67	36.69	28.22	24.68
Е	101.70	96.52	12.30	11.16	1.96	1.83	25.28	30.84	17.22	14.98	3.87	3.38
F	260.93	240.54	2.92	2.38	2.33	2.13	24.81	22.43	8.54	7.84	8.91	7.72
G	77.23	79.48	2.04	2.08	2.79	2.33	13.37	7.48	5.43	4.65	13.54	12.55
Н	41.35	22.51	1.87	1.53	2.92	2.92	14.86	15.56	1.91	1.70	22.55	18.64

Концентрация образцов рассчитанная в программе QuantAssay, пг/мл

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.00	0.13	2.97	3.13	1.32	1.31	5.09	5.75	28.93	27.84	4.63	4.25
В	4.45	5.34	21.08	20.08	3.67	3.43	5.53	5.87	4.08	3.78	27.92	26.85
С	14.44	15.03	11.45	10.09	2.88	2.50	5.52	6.38	23.37	21.67	34.01	30.16
D	42.10	38.84	5.31	4.88	8.48	7.14	4.69	5.77	48.41	35.75	27.58	24.63
E	101.76	97.53	12.71	11.42	2.14	1.92	24.93	30.09	17.03	15.01	4.30	3.70
F	246.62	253.57	3.04	2.74	2.86	2.53	24.71	22.03	8.90	8.19	9.30	8.29
G	76.05	79.43	2.13	2.16	2.88	2.39	13.31	7.64	5.40	4.53	13.51	12.53
Н	39.82	22.15	1.63	1.46	2.80	2.71	14.41	15.23	1.72	1.61	22.07	18.55

Результаты ИЛ-10

Расположение образцов в 96 луночном планшете:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	CTD 1	Стп 1	Обр	Обр.								
A	Стд. 1	Стд. 1	. 2	2	10	10	18	18	26	26	34	34
В	Стд. 2	Стд. 2	Обр	Обр.								
В	Сід. 2	Сід. 2	. 3	3	11	11	19	19	27	27	35	35
С	Стд. 3	Стд. 3	Обр	Обр.								
C	Сід. 3	Сід. 3	. 4	4	12	12	20	20	28	28	36	36
D	Стд. 4	Стд. 4	Обр	Обр.								
D	ОТД. 4	ОТД. 4	. 5	5	13	13	21	21	29	29	37	37
Е	Стд. 5	Стд. 5	Обр	Обр.								
_	Сід. 5	Сід. 5	. 6	6	14	14	22	22	30	30	38	38
F	Стд. 6	Стд. 6	Обр	Обр.								
•	Стд. о	Сід. б	. 7	7	15	15	23	23	31	31	39	39
G	ПК	ПК	Обр	Обр.								
3	HIX	LIIX	. 8	8	16	16	24	24	32	32	40	40
Н	Обр. 1	Обр. 1	Обр	Обр.								
П	оор. т	Ουρ. 1	. 9	9	17	17	25	25	33	33	41	41

Стд. — Стандартный контрольный образец; Обр. — Тестовый образец; ПК — Положительный контрольный образец

Регистрация оптической плотности для определения концентрации ИЛ-10 Elx800, оптическая плотность образцов, λ =450 nm

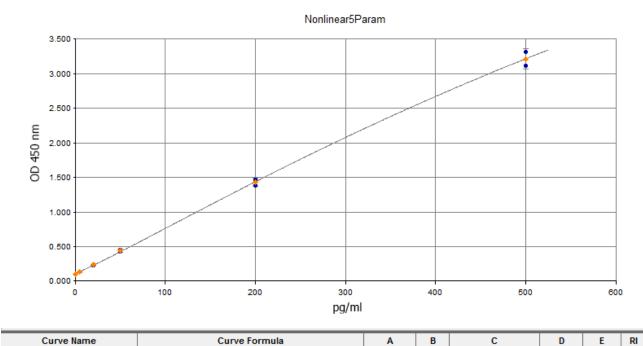
	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.100	0.101	0.144	0.152	0.110	0.108	0.125	0.119	0.130	0.122	0.112	0.107
В	0.130	0.137	0.118	0.118	0.114	0.107	0.115	0.125	0.103	0.097	0.107	0.124
С	0.231	0.241	0.086	0.092	0.135	0.137	0.126	0.122	0.108	0.104	0.114	0.118
D	0.425	0.455	0.102	0.104	0.130	0.133	0.104	0.106	0.114	0.119	0.108	0.114
Е	1.385	1.469	0.120	0.119	0.131	0.131	0.114	0.108	0.105	0.100	0.099	0.110
F	3.115	3.317	0.112	0.109	0.109	0.113	0.105	0.104	0.106	0.098	0.099	0.108
G	1.123	1.186	0.119	0.122	0.101	0.101	0.098	0.098	0.109	0.109	0.101	0.105
Н	0.108	0.112	0.106	0.102	0.110	0.108	0.101	0.108	0.098	0.094	0.110	0.109

HiPo, оптическая плотность образцов, λ =450 nm

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.099	0.100	0.150	0.155	0.113	0.109	0.132	0.123	0.131	0.118	0.108	0.106
В	0.131	0.136	0.122	0.120	0.124	0.117	0.123	0.124	0.099	0.098	0.104	0.105
С	0.229	0.244	0.093	0.104	0.142	0.140	0.159	0.126	0.109	0.104	0.109	0.112
D	0.421	0.462	0.108	0.104	0.131	0.148	0.115	0.118	0.114	0.113	0.105	0.106
E	1.389	1.471	0.124	0.126	0.135	0.137	0.116	0.107	0.105	0.106	0.101	0.116
F	3.115	3.355	0.109	0.115	0.113	0.110	0.106	0.099	0.103	0.099	0.094	0.104
G	1.111	1.187	0.119	0.119	0.100	0.102	0.097	0.097	0.104	0.107	0.101	0.103
Н	0.133	0.109	0.104	0.097	0.105	0.106	0.096	0.108	0.093	0.091	0.103	0.104

Отклонение результатов измерений полученных на фотометре HiPo от результатов измерений полученных на Elx 800, выраженное в процентах

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1%	1%	4%	2%	3%	1%	6%	4%	1%	3%	3%	0%
В	0%	1%	3%	2%	8%	9%	7%	1%	4%	1%	2%	16%
С	1%	1%	8%	13%	5%	2%	26%	4%	1%	0%	4%	5%
D	1%	2%	6%	0%	1%	11%	11%	11%	0%	5%	3%	7%
Е	0%	0%	3%	6%	3%	4%	2%	1%	0%	6%	2%	5%
F	0%	1%	3%	6%	4%	3%	1%	5%	3%	1%	5%	4%
G	1%	0%	0%	2%	1%	1%	1%	1%	5%	2%	0%	2%
Н	23%	2%	2%	5%	5%	1%	5%	0%	6%	3%	7%	4%


Оценка и интерпретация результатов

Оценка и интерпретация результатов проводились путем построения калибровочных кривых в программных обеспечениях: GEM5 (Biotek, CША) для результатов полученных на ELX800 и QuantAssay (Biosan, Латвия) для результатов полученных на HiPo.

Калибровочная кривая на GEM5

Nonlinear5Param

Количественный учёт результатов по 6 точкам (стандартам) рассчитывался по 5-параметровой логистической логарифмической модели (5PL)

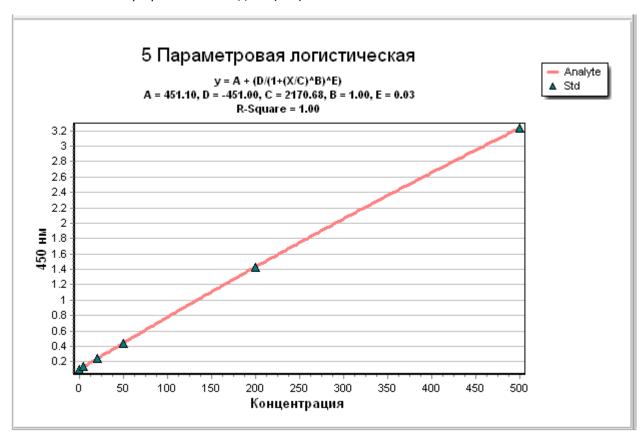
 $Y = (A-D)/(1+(X/C)^B)^E + D$

1.09E+005

7.77

193

0.113


1.1

Результаты подсчета концентрации стандартов

Стандарт, пг/мл	Лунка	Gem 5, пг/мл	Отклонение			
0	A1	0.00	_			
5	B1	3.48	30%			
20	C1	20.47	2%			
50	D1	50.19	0%			
200	E1	191.97	4%			
500	F1	480.56	4%			
0	A2	0.00	_			
5	B2	4.77	5%			
20	C2	22.06	10%			
50	D2	54.66	9%			
200	E2	204.66	2%			
500	F2	519.44	4%			

Калибровочная кривая на QuantAssay

Количественный учёт результатов по 6 точкам (стандартам) рассчитывался по 5-параметровой логистической логарифмической модели (5PL)

Результаты подсчета концентрации стандартов

Стандарт, пг/мл	Лунка	QuantAssay, пг/мл	Отклонение		
0	A1	0.00	_		
5	B1	4.59	8%		
20	C1	18.91	5%		
50	D1	46.99	6%		
200	E1	193.58	3%		
500	F1	478.87	4%		
0	A2	0.07	_		
5	B2	5.34	7%		
20	C2	21.08	5%		
50	D2	53.05	6%		
200	E2	206.43	3%		
500	F2	521.30	4%		

Концентрация образцов рассчитанная в программе GEM5, пг/мл

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.00	0.00	6.03	7.43	0.00	0.00	2.53	1.34	3.48	1.94	0.00	0.00
В	3.48	4.77	1.13	1.13	0.25	0.00	0.48	2.53	0.00	0.00	0.00	2.34
С	20.47	22.06	0.00	0.00	4.40	4.77	2.72	1.94	0.00	0.00	0.25	1.13
D	50.19	54.66	0.00	0.00	3.48	4.04	0.00	0.00	0.25	1.34	0.00	0.25
E	191.97	204.66	1.54	1.34	3.67	3.67	0.25	0.00	0.00	0.00	0.00	0.00
F	480.56	519.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G	152.87	162.21	1.34	1.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Н	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Концентрация образцов рассчитанная в программе QuantAssay, пг/мл

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.00	0.07	7.35	8.19	2.07	1.43	4.86	3.53	4.61	2.83	1.34	1.08
В	4.59	5.34	3.33	3.09	3.57	2.55	3.45	3.59	0.00	0.00	0.77	0.81
С	18.91	21.08	0.00	0.70	6.31	5.93	8.70	3.99	1.47	0.75	1.45	1.86
D	46.99	53.05	1.29	0.64	4.61	7.06	2.35	2.77	2.10	2.07	0.83	1.06
E	193.58	206.43	3.65	3.92	5.23	5.46	2.51	1.20	0.93	0.99	0.22	2.45
F	478.87	521.30	1.47	2.36	2.07	1.59	1.00	0.02	0.53	0.00	0.00	0.67
G	150.55	162.32	2.94	2.90	0.09	0.35	0.00	0.00	0.72	1.19	0.30	0.53
Н	4.95	1.51	0.76	0.00	0.80	1.08	0.00	1.30	0.00	0.00	0.50	0.76

Выводы

Чувствительность и динамический диапазон прибора соответствуют заявленным характеристикам.

Результаты сравнительных исследований на Elx 800 и HiPo соответствуют друг другу.

Среднее относительное отклонение концентрации для прибора НіРо составило не более 3.5%.

Программное обеспечение продукта удобно и не вызывает трудностей при его освоении и использовании.

Скорость анализа, чувствительность, а также линейный диапазон соответствуют лучшим стандартам мировых производителей.

На основании вышеизложенного делается вывод о том, что HiPo может быть рекомендован в качестве измерительного прибора при регистрации оптической плотности в реакция иммунодиагностики реализованной в формате 96-луночных плоскодонных планшетов.