Главная  Информация для покупателей  Новости науки  Демона Максвелла зажали между квантовыми точками

Демона Максвелла зажали между квантовыми точками

11 июня 2020


Демон Максвелла — это создание физика Джеймса Максвелла в 1867 году для разрешения парадокса, возникающего при применении второго начала термодинамики к объяснению энтропии замкнутых систем. Демон — это воображаемое существо, которое якобы управляет молекулами, их скоростью и температурой. То есть, если вообразить сосуд, разделенный на две части перегородкой, то над ней как раз сидит демон и управляет поведением молекул внутри этой системы. Его задача проста — он распределяет все молекулы по отсекам в зависимости от их скорости. Быстрые молекулы помещаются в одну часть сосуда, медленные — в другую. Разница в скоростях частиц создает и разницу в их температуре. Таким образом, демон упорядочивает молекулы и уменьшает энтропию всей системы. Это создает парадокс второго закона термодинамики.

Ученые неоднократно пытались продемонстрировать систему с демоном Максвелла, используя лабораторное оборудование, различные молекулярные машины, включали в эксперименты броуновские частицы и даже моделировали систему с использованием молекул ДНК. Последним экспериментом в исследовании термодинамики систем с демоном Максвелла стала система квантовых точек. Ученые говорят о том, что при распределении частиц по отсекам сосуда возникает определенное количество информации. Когда её становится слишком много, демон удаляет ее и, таким образом, увеличивается энтропия исследуемой системы. То есть именно наличие информации должно влиять на уровень энтропии.

Ученые поместили в систему двух квантовых точек резервуар электронов с одинаковой температурой. Было смоделировано возникновение демона Максвелла и продемонстрировано влияние информации на конвертирование тепла в работу. Ученым удалось реализовать измерение зарядов, присутствующих в системе квантовых точек, и перемещение электронов супротив приложенному напряжению по возвратной схеме. Переходы были одноэлектронными, так они помогли дать теоретическую оценку термодинамических характеристик демона Максвелла. После этого ученые составили кривые зависимостей мощности и тепла от степени туннелирования и запирающего напряжения.

Оказалось, что нормальному распределению не подчиняются рабочее, транспортное и тепловое распределения. При этом изменение энтропии целостной системы, которая представляет собой объединенные энтропии демона Максвелла и системы резервуаров с квантовыми точками, подчиняется второму закону термодинамики — ее показатель больше 0. Если допустить присутствие неидеального демона в данной системе, то возникнет некоторый шум, который создаст задержку измерения — у демона Максвелла будет сужена область действия. При этом степень туннелирования увеличится, и станут не достижимыми идеальные параметры мощности. В таких условиях описать траекторию электронов точным образом не получится. Но даже тогда можно оперировать демоном Максвелла, и именно это радует ученых, которые применяют данную модель для упорядочивания элементов других необычных систем.

DDDDD

Другая информация

18 января 2021
Парадокс Клейна подтверждён спустя почти 100 лет

Ученые попытались объяснить физический парадокс, который связан с задачей о туннелировании частиц.

14 января 2021
Размер шмелей повлиял на их разборчивость при выборе цветков

Зоологи утверждают, что крупные особи шмелей особым образом выбирают цветки, их приемы в выборе отличны от приемов особей шмелей поменьше.

11 января 2021
Европейский зонд Solar Orbiter пролетел мимо Венеры

27 декабря 2020 года аппарат прошел около второй планеты Солнечной системы, изменив наклонение орбиты, скорректировав путь до орбиты Солнца.

07 января 2021
Чип с метаповерхностью работает как магнито-оптическая система

Магнито-оптические ловушки — слишком сложные по устройству и громоздкие конструкции, поэтому ученые собрали альтернативную установку, работающую ничуть не хуже.

04 января 2021
Высокоточная 3D печать идеально подошла для микроэлектроники

Более полугода назад ученые заявили о новом методе 3D печати, который, как они предполагали, идеально подойдет для решения задач в микроэлектронике.

Вся информация


Сайт использует файлы cookies. Продолжая просматривать сайт Вы соглашаетесь с использованием cookies. Хорошо!