Главная  Информация для покупателей  Новости науки  Учёные сгенерировали в жидком гелии многоэлектронные пузыри с помощью ультразвука

Учёные сгенерировали в жидком гелии многоэлектронные пузыри с помощью ультразвука

24 августа 2020


Речь идет о новом методе увеличения плотности заряда. Ученые использовали для своего эксперимента жидкий гелий, который, даже переходя в газообразное состояние, сохраняет плотность заряда в создаваемом с помощью ультразвука пузыре. Для осуществления данного эксперимента был использован принцип Паули, который распространяется на кулоновское отталкивание как сила, воздействующая на электрон на поверхности исследуемого вещества, а также принцип поляризации жидкости, который создает силу притяжения. Таким образом, создается двумерная электронная система с возможностью создания полостей в жидкости, где наблюдается большое количество электронов.

Многоэлектронный пузырь сформировывается благодаря большой плотности электронов свыше 2×1013 на м2. При таких показателях проявляется квантовое плавление, при котором наблюдается неустойчивость электронов. Чтобы управлять ею, учёные зарядили тонкую пленку гелия. И хоть это привело к возникновению различных дефектов и потере электронов, тем не менее, с таким подходом удалось увеличить концентрацию электронов на два порядка. Затем с помощью специального лабораторного оборудования учёные провели экспериментальное наблюдение электронной системы, в которой происходил квантовый эффект. На изготовленную из бета-радиоактивного никеля-63 тонкую фольгу, чтобы зарядить поверхность жидкого гелия, воздействовали ультразвуком, сфокусированным вблизи, и провели высокоскоростную съемку. Когда интенсивность ультразвука была повышена до критических показателей, поверхность жидкого гелия претерпела деформацию: сначала из неё вылетели капельки, сформировавшиеся в тонкие столбики, после чего образовались глубокие ямки. Под воздействием электрического поля в каждом углублении происходило увеличение концентрации электронов, что в конечном итоге привело к образованию большого количества многоэлектронных пузырьков.

Однако не только ультразвук влиял на их возникновение — по крайней мере три параметра были замешаны в данном явлении, в том числе: акустическое воздействие с определённой длительностью, а также напряжение, создаваемое на ультразвуковом источнике и верхнем кольце, находящемся под воздействием электрического поля. В зависимости от того, какое напряжение было подано на кольцо и источник, возрастала или снижалась вероятность получения многоэлектронных пузырей. При этом наблюдалась прямая зависимость между шириной образующихся ямок и концентрацией электронов в их центре. Когда ученые включили в свой эксперимент новый параметр — температуру, выяснилось, что из-за плохой теплопроводности гелия при температуре 2,5 Кельвина время существования пузырьков сильно увеличилось.

DNDNND

Другая информация
04 марта 2021
Создан микромасштабный временной кристалл

Временной кристалл был реализован на основе собственных колебаний конденсате Бозе-Эйнштейна. Его создание велось при очень низких температурах и в атомарных масштабах.

01 марта 2021
Обнаружено древнейшее египетское руководство по мумификации

Ученые обнаружили новый медицинский документ, являющийся древнейшим руководством по мумификации с указанием подробных правил проведения бальзамирования.

25 февраля 2021
Найдена «ахиллесова пята» бактерии, вызывающей болезнь Крона

Палочки отлично справляются с атаками иммунной системы человека, выживая в макрофагах за счет имеющегося у них гена PduC.

22 февраля 2021
В Солнечной системе обнаружен самый дальний объект FarFarOut

Объект 2018 AG37 находится от Солнца на расстоянии 132 а.е. Он имеет крайне вытянутую орбиту, год на нём длится около тысячи земных лет.

18 февраля 2021
Жидкие кристаллы приобрели свойство самоорганизации при нагревании

При нагревании жидкие кристаллы обычного типа теряют свою структуру, поэтому пытаются самоорганизоваться на более высоких стадиях, ища более выгодное состояние симметрии.

Вся информация


Сайт использует файлы cookies. Продолжая просматривать сайт Вы соглашаетесь с использованием cookies. Хорошо!