Главная  Информация для покупателей  Новости науки  В наших клетках найдена новая ДНК-структура

В наших клетках найдена новая ДНК-структура

23 апреля 2018


Впервые в мире определена новая структура ДНК внутри человеческих клеток, австралийские исследователи, обнаружившие данную структуру назвали ее i-мотивом (структура вставочного мотива, i-motif, от «intercalated» — вставочный). Закрученный «узел» ДНК, или i-мотив никогда ранее не был замечен внутри живых клеток. Новые результаты, полученные в Институте медицинских исследований Гарвана, опубликованы 23 апреля 2018 года в ведущем журнале Nature Chemistry.

Это художественное изображение i-мотива, а также инструмента на основе антител, используемого для его обнаружения внутри клетки.

Глубоко внутри клеток нашего тела лежит наша ДНК. Информация в коде ДНК — все 6 миллиардов букв A — А (аденин), C — Ц (цитозин), G — Г(гуанин) и T — Т (тимин) — дает четкие инструкции о том, как строятся наши тела и как они работают. Уже ставшая культовой «двойная спираль» формы ДНК захватила общественное воображение с 1953 года, когда Джеймс Уотсон и Фрэнсис Крик неожиданно для всех раскрыли структуру ДНК. Однако теперь известно, что короткие фрагменты ДНК могут существовать в других формах, по крайней мере, в лабораторных условиях, и ученые подозревают, что эти отличные от двойной спирали формы могут играть важную роль в том, как и, главное, когда считывается код ДНК. Новая форма ДНК полностью отличается от двухцепочечной спирали. «Когда большинство из нас думает о ДНК, мы думаем о двойной спирали», — говорит адъюнкт-профессор Дэниэл Крис (руководитель Лаборатории терапии антителами в Гарване), главный автор данной работы. «Это новое исследование напоминает нам о том, что существуют совершенно разные структуры ДНК, и все они могут быть чрезвычайно важны для наших клеток».

«I-мотив представляет собой четырехцепочечный „узел“ ДНК, — говорит доцент Марсель Динджер (руководитель Центра клинической геномики Кингхорна в Гарване), который возглавлял исследование наравне с профессором Дэниэлем Крисом. В структуре узла буквы Ц (цитозин) на одной и той же цепочке ДНК связываются друг с другом, так что это сильно отличается от двойной спирали, где „буквы“ на противоположных цепях распознают друг друга и где Ц связываются с Г [гуанин]».

Хотя исследователи раньше и видели i-мотив и даже подробно изучили его, он был засвидетельствован только in vitro, то есть в искусственных условиях, созданных в лаборатории, а не внутри клеток. Фактически, все специалисты в этой области давно обсуждали вопрос, способны ли «узлы» i-мотивов существовать внутри живых клеток — вопрос, на который сейчас благодаря новой находке, наконец, получен ответ.

Чтобы обнаружить i-мотивы внутри клеток, исследователи должны были разработать новый точный инструмент — фрагменты молекул антител, которые могли бы специфически распознавать i-мотивы и прикрепляться к ним с очень высокой аффинностью (силой взаимодействия антигена и антитела). До сих пор понимание роли i-мотивов было невозможно из-за отсутствия антител специфичных для них. Фатальным было то, что фрагмент антитела не обнаруживал ДНК в спиральной форме и не распознавал «G- квадруплексную связь (двойную дуплексную связь)», структурно похожую на четырехцепочечное расположение ДНК. Используя созданный ими инструмент, исследователи обнаружили местоположение i-мотивов в ряде клеточных линий человека. Для определения расположения i-мотивов ученые применили не ИФА (иммуноферментный анализ), который часто применяется для выявления антител, а методы флуоресценции, благодаря чему они смогли визуализировать многочисленные пятна зеленого цвета в ядре, которые являются индикаторами i-мотивов. «Больше всего нас заинтересовало то, что мы можем видеть зеленые пятна — i-мотивы — появляющиеся и исчезающие с течением времени, поэтому мы знаем, что они формируются, разрушаются и снова формируются», — говорит д-р Махди Зераати, чьи исследования лежат в основе данной работы.

Исследования показали, что i-мотивы в основном формируются в определенное время жизненного цикла клетки, а именно, в конце G1 (Gap1) фазы, во время активного «чтения» ДНК. Они также показали, что i-мотивы появляются в некоторых областях промотора (области ДНК, которая контролирует включение или выключение генов) и в теломерах, концевых участках хромосом, которые задействованы в процессе старения. Д-р Зераати говорит: «Мы считаем, что факт возникновения и исчезновения i-мотивов — это ключ к тому, что именно они делают. Похоже, что они включают или отключают гены и влияют на то, насколько активно читается ген». «Мы также считаем, что преходящий характер i-мотивов объясняет, почему их до сих пор не могли отследить в клетках», — добавляет адъюнкт-профессор Дэниэл Крис. Профессор Марсель Динджер говорит: «Обнаружить абсолютно новую форму ДНК в клетках было большим прорывом, ведь результаты этих исследований создадут основу для совершенно нового понимания того, для чего действительно нужна открытая нами форма ДНК, влияет ли она на здоровье и болезни».


Бренды по теме
Другая информация
15 апреля 2021
Техника ультразвуковой визуализации позволяет читать мысли

Работа новой системы основывается на технологии функционального ультразвука, которая точно отображает нейронную активность из ее источника глубоко в мозге с разрешением около 100 мкм.

12 апреля 2021
Изучена структура углерода под давлением 2000 гПа

Алмазная фаза углерода, как считают ученые, является самой «упрямой» структурой, которая способна сохранится в гораздо большем диапазоне планетарных условий, чем считалось ранее.

08 апреля 2021
Археи искажают свою ДНК экстремальными способами

Микробы-археи могут мгновенно искажать свою ДНК, чтобы включать и выключать нужные гены. Такой вид молекулярной «гимнастики» ранее никогда не наблюдался у других организмов.

05 апреля 2021
Ученые разработали устройство, которое помогает ускорить регенерацию костей

Новый модифицированный метод введения лекарств с помощью специального имплантируемого устройства исключает необходимость в повторных инъекциях.

01 апреля 2021
Искусственный интеллект поможет диагностировать рак молочной железы

Аналитическая система была обучена с помощью процессов машинного обучения, чтобы предсказывать такие молекулярные характеристики, как экспрессия генов и белков и состояние ДНК.

Вся информация


Сайт использует файлы cookies. Продолжая просматривать сайт Вы соглашаетесь с использованием cookies. Хорошо!