Главная  Информация для покупателей  Новости науки  Высокоточная 3D печать идеально подошла для микроэлектроники

Высокоточная 3D печать идеально подошла для микроэлектроники

04 января 2021


Более полугода назад ученые заявили о новом методе 3D печати, который, как они предполагали, идеально подойдет для решения задач в микроэлектронике. Тогда метод был еще сырым, но показал замечательные результаты. В апреле 2020 года были опубликованы статьи, раскрывающие суть метода, с помощью которого удалось создать объемные электрические схемы, а именно — датчики формы и тактильные датчики.

С тех пор прошло около 8 месяцев. За это время ученым удалось тщательно протестировать подобный метод печати, изготовить массу интересных объемных структур, испытать их на применимость и прочность с помощью испытательных машин и понять, насколько он эффективен в микроэлектронике. Так, новый способ трехмерной печати подошел для изготовления форм микроскопических размеров, особенно если их необходимо заготавливать в большом разнообразии материалов. До создания этого метода не представлялось возможным печатать детали, состоящие из пластика и металла одновременно. Долгое время такое сочетание не находило промышленного применения.

Чтобы печатать такие предметы как микросхемы, раньше применялась микролитография, или послойное нанесение, создание из 2D — 3D структур. Этот метод учёные адаптировали под текущие запросы. Они применили фотолитографию для создания трехмерных предметов послойно, но с нанесением одновременно всех слоев. Таким образом, при помощи фигурной маски и заготовленной ванны с пластмассой был создан полимерный каркас. Он выглядел как трехмерная решетка с разными зарядами в различных ее точках. Затем в решетке переплели пластик и металл, получив то, что раньше было трудно реализуемым.

Новая технология идеально подходит для создания гибкой электроники. Например, ученые создали тактильный датчик, в основе которого лежит пьезоэлектрический эффект. Деформируя твёрдое тело (основу), устройство генерирует ток, который передается через медные контакты, соединённые в определенную сетку. Усиливая деформацию, учёные добиваются увеличения напряжения, а значит, конструкция лучше реагирует на импульсы. Эту схему уже внедрили в разработку роботов и протезов, воспроизводящих тактильную систему человека.

DDDNDNDDDNNDDDDD


Бренды по теме
Другая информация
15 апреля 2021
Техника ультразвуковой визуализации позволяет читать мысли

Работа новой системы основывается на технологии функционального ультразвука, которая точно отображает нейронную активность из ее источника глубоко в мозге с разрешением около 100 мкм.

12 апреля 2021
Изучена структура углерода под давлением 2000 гПа

Алмазная фаза углерода, как считают ученые, является самой «упрямой» структурой, которая способна сохранится в гораздо большем диапазоне планетарных условий, чем считалось ранее.

08 апреля 2021
Археи искажают свою ДНК экстремальными способами

Микробы-археи могут мгновенно искажать свою ДНК, чтобы включать и выключать нужные гены. Такой вид молекулярной «гимнастики» ранее никогда не наблюдался у других организмов.

05 апреля 2021
Ученые разработали устройство, которое помогает ускорить регенерацию костей

Новый модифицированный метод введения лекарств с помощью специального имплантируемого устройства исключает необходимость в повторных инъекциях.

01 апреля 2021
Искусственный интеллект поможет диагностировать рак молочной железы

Аналитическая система была обучена с помощью процессов машинного обучения, чтобы предсказывать такие молекулярные характеристики, как экспрессия генов и белков и состояние ДНК.

Вся информация


Сайт использует файлы cookies. Продолжая просматривать сайт Вы соглашаетесь с использованием cookies. Хорошо!